Packing Heat!

Dimitrios A. Glynos

{ dimitris at census-labs.com }
Census, Inc.

AthCon 2012 / Athens, Greece

OVERVIEW

INTRODUCTION

EVADING DETECTION FROM AV SOFTWARE
PRODUCING METAMORPHIC EXECUTABLES
IMPLEMENTING A METAMORPHIC PACKER

EVALUATION

CONCLUSIONS

based on photo by Thomas Angermann

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

EXECUTABLE PACKING

» A (runtime) packer is a piece of software that places
an application (and sometimes other related files)
inside an executable container file

» At execution time the container loads and executes
the “packed” software (payload)

» A packer may compress and/or encrypt the
container contents

EXECUTABLE PACKING

» Why use a packer?
» To decrease on-disk application size
» To hide application internals
» To enable the execution of pentest (or other malicious)
apps on hosts protected by AntiViruses (AV) or IPS

» In this presentation we’ll focus on PE packing for AV
evasion purposes

ANTIVIRUS SOFTWARE

» Originally, a means for disinfecting systems from
software viruses

» Nowadays, they also protect hosts from other types
of malicious software activity

» Poor man’s HIPS

ANTIVIRUS SOFTWARE

» Automatic malware detection based on

» Static analysis (signatures, imports, etc.)
» Dynamic analysis (suspicious calls, heuristics etc.)

» Two main modes of operation

» Identifying malware at scan-time
» Identifying malware at runtime

» Malware classification is a non-trivial process

EVADING DETECTION FROM AV SOFTWARE

based on photo by foqus

EVADING STATIC ANALYSIS TECHNIQUES

PE file
format

MS-DOS MZ header

MS-DOS stub program

PE file signature

PE file header

PE file optional header

Data directories
(Import Table etc.)

Section headers

.text Section

.bss Section

.rdata Section

.debug Section

Encode payload

Generate a different PE
each time

Normal PE structure

No signatures from
section/header data

Keep entropy low
Standard MS-DOS stub

Refer to an unsuspicious
set of external functions

Unique Control Flow
Graph

EVADING DYNAMIC ANALYSIS TECHNIQUES

execution

flow

A

f2

f3

Model the behavior of innocent
apps

Load code and data at different
memory locations for each PE

Make each PE have a unique Call
Graph

Handle tracing / emulation
Take per AV measures

Pray that the AV will give up
before spotting the embedded
known malware

PRODUCING METAMORPHIC EXECUTABLES

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC

A TYPICAL PACKING SCENARIO

PE Container data
| PE stub data | Allocator | Decoder | Loader | Enc. Payload | ... |

» Atbuild time, the packer

» Encodes (compresses, encrypts etc.) the payload

» Installs the payload in a section of a “stub” PE file
» At runtime, the container

» Allocates memory

» Decodes the payload (in the allocated memory)
» Loads (and executes) the payload

PROBLEMS WITH THIS DESIGN

PE Container data
| PE stub data | Allocator | Decoder | Loader | Enc. Payload | ... |

» The packer output is immediately identifiable
» Pieces of the stub can be used as a signature
» The Allocator, Decoder and Loader code can also be
used as a signature
» What's the problem with identifying the packer?
» If the loading process is always the same, the AV
knows when loading has finished
» It can wait until then to extract and analyze the
original payload

TWO HELPFUL TECHNIQUES

» Polymorphic Encoding
» Encrypt code with random key
» Instructions will be decrypted and executed at
runtime
» Metamorphic Encoding
» Reimplement a set of operations with equivalent
instructions

» Special software generates the equivalent code
automatically

A BETTER PACKER DESIGN

PE Container data
| PE data | Met. Allocator | Met. Decoder | Enc. Loader | Enc. Payload | ... |

» Atbuild time, the packer
» Generates a new metamorphic Allocator and
Decoder
» Encodes the Payload and Loader (polymorphic
encoding)
» Incorporates all components into a new container

» At runtime, the container

» Allocates memory
» Decodes the Loader and Payload
» Loads and executes the Payload

ONLY PROBLEM IS...

Need a way to
» generate the metamorphic code on-the-fly
create the PE container from scratch

\{

v

integrate all components seamlessly

v

have full control over the output of each phase
» necessary for fooling static/dynamic analysers

IMPLEMENTING A METAMORPHIC PACKER

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC

METASM - THE RIGHT TOOL FOR THE JOB

» A Ruby framework that provides “a cross-architecture
assembler, disassembler, compiler, linker and debugger”

>

See [METASM]

» Idea:

>

>

>

Make the packer a Ruby script!

Develop a library of metamorphic instructions
Implement the Allocator, Decryptor and Loader
using these instructions

Assemble with METASM

Encrypt Payload and Loader bytes in Ruby
Link intermediate object code using METASM
Generate final PE file using METASM

» Ruby + METASM make our packer cross-platform!

STEP 1: BECOME FAMILIAR WITH METASM

pe = Metasm::PE.assemble Metasm::Ia32.new, <<EOS
.entrypoint

push O

push title

push message

push O

call messagebox

Xor eax, eax

ret

.import ’user32’ MessageBoxA messagebox
.data

message db ’Hello World!’, O

title db ’Messabox Title’, O

EOS

pe.encode_file ’output.exe’

» Script-level assembler control: a powerful tool!

» Dynamic selection of registers, instructions etc.
» Dynamic creation of symbols, labels etc.

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC

STEP 2: DEVELOP A METAMORPHIC
INSTRUCTION LIBRARY

def self.add_reg_dword(reg, val, _avoid_regs=[])
avoid_regs = Array.new(_avoid_regs)
avoid_regs << reg

methods = [
Proc.new {
"add %s, %i\n" % [reg, vall
8=

provide other alternative implementations here
avoiding the use of protected registers found
in "avoid_regs"

]
method = methods[rand(methods.length)]
return method.call()

end

» Keep this private!

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC

STEP 3: ENCODE VALUES

» Hide particular constants by doing arithmetic with
random numbers

» Strings can be encoded in a similar fashion ;-)

STEP 4: IMPLEMENT WINAPI WRAPPERS

\{

Create wrappers for useful WinAPI functions
Resolve a function’s address via GetProcAddress

v

\4

Use metamorphic instructions to place the function’s
arguments on the stack

\{

Execute the function via a metamorphic “call”
instruction

STEP 5: IMPLEMENT THE ALLOCATOR

» Use the WinAPI wrappers to build your memory
allocator

» It's good to use memory blocks that do not always
start at the same memory address

STEP 6: IMPLEMENT THE DECODER

v

Decide on a payload encryption method

\{

Pick a random key

v

Insert the key at a random place in the PE file

\{

Prepare a metamorphic decryptor

\4

Decrypt inside the previously allocated memory
blocks
» Key may also be derived from the execution
environment or other context
» See our Context-keyed Payload Encoding [CN10]
presentation from AthCon 2010

STEP 7: IMPLEMENT THE LOADER

» Pick your favorite loading technique
» For an example, see [PELOAD]

» Use the WinAPI wrappers to implement the loader
» This makes the loader metamorphic too!

STEP 8: BE CREATIVE!

\{

Introduce garbage...
» Garbage instructions (like no-ops)
» Garbage calls
» Interpolate real code with garbage

v

Play games with the execution flow
» Introduce conditional branches

\{

Randomize the execution flow
» Create a dependency graph of code components
» At build time, randomize placement of components
» Runtime equivalent — use a dispatcher

\{

Create a seemingly innocent import table
» Don’tjust put functions there, use them too!

v

Insert (metamorphic) anti-emulation code

STEP 9: IMPLEMENT THE PE GENERATOR

\4

Assemble all intermediate components

v

Encrypt Loader and Payload

\4

Link all components together and generate the PE
Make the resulting PE look standard

» Examine a standard Windows application

» Check header values

» Check section attributes

» Modify the container structure accordingly

\4

TRIVIA

» Prototype implementation: 1700 lines of code
» A total of 24 polymorphic instructions and WinAPI
wrappers

» Did (almost) all of the development under Linux
with the assistance of winedbg

» Found Ruby to be a bit slow at encryption / shuffling
(but that could be my fault)

EVALUATION

VIRUSTOTAL STATISTICS

\{

Test payload
» Metasploit “TCP reverse shell” for Windows

v

Without packing
» Detection ratio: 33/42
With packing
» Detection ratio: 6/42
» 5 warnings about suspicious / packed file

» Same 5 warnings for packed innocent file

\{

» 1 AV flagged this as a trojan

\

Complete stealthiness is tricky
» Prepare yourself for some long hours of fine tuning!

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

CONCLUSIONS

KING HEAT :: ATHCON 2012 :: CENSUS, INC.

PAC

NOTES ON DETECTING MALICIOUS
EXECUTABLES

» Employ both static and dynamic analysis techniques
» Signature matching will always come in handy

» Fastest method of detection
» Strive to detect the payload, not just the packer

» See [CS10] by Silvio Cesare for ways to detect when
unpacking has finished
» Useful for detecting known malicious payloads
» At runtime, identify groups of calls to library
functions (and system calls) that are indicative of
malicious behavior
» Useful for detecting both known and unknown
malicious payloads

CONCLUDING REMARKS

» Presented a novel design for a metamorphic packer

» METASM provides a cross-platform toolchain for
building such packers

» Example implementation produces malicious
executables that evade detection from a large number
of AV software

» As metamorphic malware becomes the norm, AV
vendors must invest on better runtime analysis
techniques

» AVs are no substitute for user awareness!

REFERENCES

Microsoft PE and COFF Specification
http://msdn.microsoft.com/windows/hardware/ggd63119

Portable Executable Loaders and Wrappers
http://www.cultdeadcow.com/tools/pewrap.html

The METASM assembly manipulation suite
http://code.google.com/metasm

Context-keyed Payload Encoding: Fighting the Next Generation
of IDS
by D. A. Glynos, Census Inc., AthCon 2010

VirusTotal - Free online Virus, Malware and URL Scanner
http://www.virustotal.com

Fast Automated Unpacking and Classification of Malware
by Silvio Cesare, Master’s Thesis, 2010

http://msdn.microsoft.com/windows/hardware/gg463119
http://www.cultdeadcow.com/tools/pewrap.html
http://code.google.com/metasm
http://www.virustotal.com

QUESTIONS?

	Introduction
	Evading detection from AV software
	Producing metamorphic executables
	Implementing a metamorphic packer
	Evaluation
	Conclusions

