
PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

Packing Heat!

Dimitrios A. Glynos
{ dimitris at census-labs.com }

Census, Inc.

AthCon 2012 / Athens, Greece

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

OVERVIEW

INTRODUCTION

EVADING DETECTION FROM AV SOFTWARE

PRODUCING METAMORPHIC EXECUTABLES

IMPLEMENTING A METAMORPHIC PACKER

EVALUATION

CONCLUSIONS

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

INTRODUCTION

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

EXECUTABLE PACKING

I A (runtime) packer is a piece of software that places
an application (and sometimes other related files)
inside an executable container file

I At execution time the container loads and executes
the “packed” software (payload)

I A packer may compress and/or encrypt the
container contents

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

EXECUTABLE PACKING

I Why use a packer?
I To decrease on-disk application size
I To hide application internals
I To enable the execution of pentest (or other malicious)

apps on hosts protected by AntiViruses (AV) or IPS
I In this presentation we’ll focus on PE packing for AV

evasion purposes

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

ANTIVIRUS SOFTWARE

I Originally, a means for disinfecting systems from
software viruses

I Nowadays, they also protect hosts from other types
of malicious software activity

I Poor man’s HIPS

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

ANTIVIRUS SOFTWARE

I Automatic malware detection based on
I Static analysis (signatures, imports, etc.)
I Dynamic analysis (suspicious calls, heuristics etc.)

I Two main modes of operation
I Identifying malware at scan-time
I Identifying malware at runtime

I Malware classification is a non-trivial process

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

EVADING DETECTION FROM AV SOFTWARE

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

EVADING STATIC ANALYSIS TECHNIQUES

PE file
format

MS-DOS MZ header
MS-DOS stub program

PE file signature
PE file header

PE file optional header

Data directories
(Import Table etc.)

Section headers
...

.text Section
.bss Section

.rdata Section
...

.debug Section

I Encode payload
I Generate a different PE

each time
I Normal PE structure
I No signatures from

section/header data
I Keep entropy low
I Standard MS-DOS stub
I Refer to an unsuspicious

set of external functions
I Unique Control Flow

Graph

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

EVADING DYNAMIC ANALYSIS TECHNIQUES

execution
flow

f1

f2

f3

I Model the behavior of innocent
apps

I Load code and data at different
memory locations for each PE

I Make each PE have a unique Call
Graph

I Handle tracing / emulation
I Take per AV measures
I ...
I Pray that the AV will give up

before spotting the embedded
known malware

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

PRODUCING METAMORPHIC EXECUTABLES

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

A TYPICAL PACKING SCENARIO

PE Container data
PE stub data Allocator Decoder Loader Enc. Payload ...

I At build time, the packer
I Encodes (compresses, encrypts etc.) the payload
I Installs the payload in a section of a “stub” PE file

I At runtime, the container
I Allocates memory
I Decodes the payload (in the allocated memory)
I Loads (and executes) the payload

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

PROBLEMS WITH THIS DESIGN

PE Container data
PE stub data Allocator Decoder Loader Enc. Payload ...

I The packer output is immediately identifiable
I Pieces of the stub can be used as a signature
I The Allocator, Decoder and Loader code can also be

used as a signature
I What’s the problem with identifying the packer?

I If the loading process is always the same, the AV
knows when loading has finished

I It can wait until then to extract and analyze the
original payload

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

TWO HELPFUL TECHNIQUES

I Polymorphic Encoding
I Encrypt code with random key
I Instructions will be decrypted and executed at

runtime
I Metamorphic Encoding

I Reimplement a set of operations with equivalent
instructions

I Special software generates the equivalent code
automatically

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

A BETTER PACKER DESIGN

PE Container data
PE data Met. Allocator Met. Decoder Enc. Loader Enc. Payload ...

I At build time, the packer
I Generates a new metamorphic Allocator and

Decoder
I Encodes the Payload and Loader (polymorphic

encoding)
I Incorporates all components into a new container

I At runtime, the container
I Allocates memory
I Decodes the Loader and Payload
I Loads and executes the Payload

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

ONLY PROBLEM IS...

Need a way to
I generate the metamorphic code on-the-fly
I create the PE container from scratch
I integrate all components seamlessly
I have full control over the output of each phase

I necessary for fooling static/dynamic analysers

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

IMPLEMENTING A METAMORPHIC PACKER

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

METASM - THE RIGHT TOOL FOR THE JOB

I A Ruby framework that provides “a cross-architecture
assembler, disassembler, compiler, linker and debugger”

I See [METASM]
I Idea:

I Make the packer a Ruby script!
I Develop a library of metamorphic instructions
I Implement the Allocator, Decryptor and Loader

using these instructions
I Assemble with METASM
I Encrypt Payload and Loader bytes in Ruby
I Link intermediate object code using METASM
I Generate final PE file using METASM

I Ruby + METASM make our packer cross-platform!

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

STEP 1: BECOME FAMILIAR WITH METASM

pe = Metasm::PE.assemble Metasm::Ia32.new, <<EOS

.entrypoint

push 0

push title

push message

push 0

call messagebox

xor eax, eax

ret

.import ’user32’ MessageBoxA messagebox

.data

message db ’Hello World!’, 0

title db ’Messabox Title’, 0

EOS

pe.encode_file ’output.exe’

I Script-level assembler control: a powerful tool!
I Dynamic selection of registers, instructions etc.
I Dynamic creation of symbols, labels etc.

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

STEP 2: DEVELOP A METAMORPHIC

INSTRUCTION LIBRARY

def self.add_reg_dword(reg, val, _avoid_regs=[])

avoid_regs = Array.new(_avoid_regs)

avoid_regs << reg

methods = [

Proc.new {

"add %s, %i\n" % [reg, val]

},

...

provide other alternative implementations here

avoiding the use of protected registers found

in "avoid_regs"

...

]

method = methods[rand(methods.length)]

return method.call()

end

I Keep this private!

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

STEP 3: ENCODE VALUES

I Hide particular constants by doing arithmetic with
random numbers

I Strings can be encoded in a similar fashion ;-)

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

STEP 4: IMPLEMENT WINAPI WRAPPERS

I Create wrappers for useful WinAPI functions
I Resolve a function’s address via GetProcAddress

I Use metamorphic instructions to place the function’s
arguments on the stack

I Execute the function via a metamorphic “call”
instruction

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

STEP 5: IMPLEMENT THE ALLOCATOR

I Use the WinAPI wrappers to build your memory
allocator

I It’s good to use memory blocks that do not always
start at the same memory address

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

STEP 6: IMPLEMENT THE DECODER

I Decide on a payload encryption method
I Pick a random key
I Insert the key at a random place in the PE file
I Prepare a metamorphic decryptor
I Decrypt inside the previously allocated memory

blocks
I Key may also be derived from the execution

environment or other context
I See our Context-keyed Payload Encoding [CN10]

presentation from AthCon 2010

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

STEP 7: IMPLEMENT THE LOADER

I Pick your favorite loading technique
I For an example, see [PELOAD]

I Use the WinAPI wrappers to implement the loader
I This makes the loader metamorphic too!

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

STEP 8: BE CREATIVE!

I Introduce garbage...
I Garbage instructions (like no-ops)
I Garbage calls
I Interpolate real code with garbage

I Play games with the execution flow
I Introduce conditional branches

I Randomize the execution flow
I Create a dependency graph of code components
I At build time, randomize placement of components
I Runtime equivalent – use a dispatcher

I Create a seemingly innocent import table
I Don’t just put functions there, use them too!

I Insert (metamorphic) anti-emulation code

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

STEP 9: IMPLEMENT THE PE GENERATOR

I Assemble all intermediate components
I Encrypt Loader and Payload
I Link all components together and generate the PE
I Make the resulting PE look standard

I Examine a standard Windows application
I Check header values
I Check section attributes
I Modify the container structure accordingly

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

TRIVIA

I Prototype implementation: 1700 lines of code
I A total of 24 polymorphic instructions and WinAPI

wrappers
I Did (almost) all of the development under Linux

with the assistance of winedbg
I Found Ruby to be a bit slow at encryption / shuffling

(but that could be my fault)

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

EVALUATION

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

VIRUSTOTAL STATISTICS

I Test payload
I Metasploit “TCP reverse shell” for Windows

I Without packing
I Detection ratio: 33/42

I With packing
I Detection ratio: 6/42
I 5 warnings about suspicious / packed file

I Same 5 warnings for packed innocent file
I 1 AV flagged this as a trojan

I Complete stealthiness is tricky
I Prepare yourself for some long hours of fine tuning!

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

DEMO

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

CONCLUSIONS

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

NOTES ON DETECTING MALICIOUS

EXECUTABLES

I Employ both static and dynamic analysis techniques
I Signature matching will always come in handy

I Fastest method of detection
I Strive to detect the payload, not just the packer
I See [CS10] by Silvio Cesare for ways to detect when

unpacking has finished
I Useful for detecting known malicious payloads

I At runtime, identify groups of calls to library
functions (and system calls) that are indicative of
malicious behavior

I Useful for detecting both known and unknown
malicious payloads

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

CONCLUDING REMARKS

I Presented a novel design for a metamorphic packer
I METASM provides a cross-platform toolchain for

building such packers
I Example implementation produces malicious

executables that evade detection from a large number
of AV software

I As metamorphic malware becomes the norm, AV
vendors must invest on better runtime analysis
techniques

I AVs are no substitute for user awareness!

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

REFERENCES

Microsoft PE and COFF Specification
http://msdn.microsoft.com/windows/hardware/gg463119

Portable Executable Loaders and Wrappers
http://www.cultdeadcow.com/tools/pewrap.html

The METASM assembly manipulation suite
http://code.google.com/metasm

Context-keyed Payload Encoding: Fighting the Next Generation
of IDS
by D. A. Glynos, Census Inc., AthCon 2010

VirusTotal - Free online Virus, Malware and URL Scanner
http://www.virustotal.com

Fast Automated Unpacking and Classification of Malware
by Silvio Cesare, Master’s Thesis, 2010

http://msdn.microsoft.com/windows/hardware/gg463119
http://www.cultdeadcow.com/tools/pewrap.html
http://code.google.com/metasm
http://www.virustotal.com

PACKING HEAT :: ATHCON 2012 :: CENSUS, INC.

QUESTIONS?

	Introduction
	Evading detection from AV software
	Producing metamorphic executables
	Implementing a metamorphic packer
	Evaluation
	Conclusions

