Project Heapbleed

Thoughts on heap exploitation abstraction (WIP)

l Y
N -

TERONIGHTS 2014

NOVEMBER 13-14

PATROKLOS ARGYROUDIS
CENSUS S.A. argp@census-labs.com www.census-labs.com




Who am |
e Researcher at CENSUS S.A.

o Vulnerability research, reverse engineering, exploit development,
binary and source code auditing, tooling for these

e Before that | was working (postdoc) on applied
cryptography at Trinity College Dublin
o Designing, implementing, attacking network security protocols
e Heap exploitation abstraction obsession; joint work with
huku (who would be here if Greece didn’t have

compulsory military service ;)

CENSUS S.A. info@census-labs.com www.census-labs.com @




Warning

No pictures

No diagrams

No charts

(almost) No math

Lots of text (I promise to try not to just read slides)
Perpetual work-in-progress

CENSUS S.A. info@census-labs.com www.census-labs.com @



Outline

Introduction and motivation
Related work
Types and categories of heap bugs

Heap attacks and exploitation abstraction
o |dentifying and defining reusable primitives

e Heap exploitation modeling

CENSUS S.A. info@census-labs.com www.census-labs.com @



Motivation

e Heap bugs are the most common type of bugs

e Understanding of
o allocator's medata,
o allocator’s allocation/deallocation algorithms,
o how the target application interfaces to the allocator,
o how application-specific data are placed on the heap,

> Iin order to create conditions aiding exploitation

e Complicated bugs
e Increasingly sophisticated mitigation technologies

CENSUS S.A. info@census-labs.com www.census-labs.com @



Objective

Heap exploitation is becoming increasingly harder
and more complicated

Need to find ways to reduce the time required for
heap attacks/exploitation

Our goal is not to perform an academic exercise,
l.e. create a formal model and publish

Practical, reusable heap attack primitives that
reduce exploit development time/effort

CENSUS S.A. info@census-labs.com www.census-labs.com @



Abstraction

Abstraction and the definition of reusable primitives is a
valuable tool to tackle complexity

“Design patterns” in software engineering
o Reusable solution to a commonly occurring problem within a
given context

Sure, (heap) exploitation is much more complicated than
writing software (it is) but the concept applies
Some previous work on exploitation™ abstraction

* The term “exploitation” in this talk is used in the context of memory corruption
vulnerabilities

CENSUS S.A. info@census-labs.com www.census-labs.com @



Related work
e EXxploitation blueprint (Valasek, Smith)

o Examples on modern common applications (bug to exploit)
o Showcased reusable techniques
e Automated exploitation grand challenge (Vanegue)
o Goal: reduced or no human interaction
o ldentified categories of exploit primitives

o Model heap operation with a probabilistic transition system
(Markov chains)
o Random walks to reach exploitable heap states

CENSUS S.A. info@census-labs.com www.census-labs.com @



Related work

e \Weird machines (Flake, Bratus, et al)
o State machine of the target after memory corruption
o New (unexpected by the developer) states now reachable
o Violation of security specification, i.e. exploitation

e Modeling of exploitation (Miller)
o Finite set of primitives for transitioning between the states
of a target under a memory corruption bug

o Exploitation techniqgues combine these primitives to reach
desired end states

CENSUS S.A. info@census-labs.com www.census-labs.com @




Heap bugs

Buffer overflow
Use-after-free
Dangling/stale pointer
Double free

CENSUS S.A. info@census-labs.com www.census-labs.com @



Buffer overflow

e Allocating a buffer on the heap
o Perhaps with a wrong size due to a wrong calculation
o Then writing more data to it

e \Writing to a heap array with a for loop
o That relies on a wrongly calculated loop limit

int a, b;
if(a > 0)
char *dest = (char *)malloc(a);

memcpy (dest, src, a - b);

CENSUS S.A. info@census-labs.com www.census-labs.com @



Dangling/stale pointer

Have an allocated heap item

o For example, an object (instance of a class)

Have a pointer to it

Perform an action that frees the heap item

o Qut-of-sync reference count of the heap item

o Without invalidating the pointer

The pointer is now dangling/stale

o Pointing to a free heap "slot"

Somehow the slot is reclaimed with data/object of your
choosing (must be of the same size as the freed one)

CENSUS S.A. info@census-labs.com www.census-labs.com @



Use-after-free

What follows from a dangling/stale pointer bug

The “slot” is usually reclaimed via spraying

o The bug may allow reclaiming without spraying
Depending on what the pointer was pointing to and
with what the heap “slot” is reclaimed

o Object pointer

o Vtable pointer

Just dereferencing the pointer may not cause a crash
(unless heap integrity tools are used)

CENSUS S.A. info@census-labs.com www.census-labs.com @



Double free

e The deallocation API call (e.g. free()) is called twice on the
same memory address
e Depending on the allocator may or may not lead to

corruption of its metadata
o Linked-list-based allocators
o Bitmap-based allocators
char *dest = (char *)malloc(n);
if (some condition)
free (dest) ;
free (dest) ;

CENSUS S.A. info@census-labs.com www.census-labs.com @



Attacking heap managers

Interfacing to the allocator

Heap arrangement / heap feng shui
Metadata attacks

Adjacent region attacks
Application-specific data attacks

CENSUS S.A. info@census-labs.com www.census-labs.com




Interfacing to the allocator

e As the attacker we don’t have direct access to the
allocator’'s API

e \We can only allocate/deallocate indirectly via the
target application’s exposed functionality

o Operating system kernel: system calls, IOCTLs,
opening/closing devices, drivers’ APls

o Browser: Javascript, VBscript, ActionScript

o Media player: Metadata tags, containers within containers

CENSUS S.A. info@census-labs.com www.census-labs.com @



Enumerating interfaces

e \We need to a way to trace allocations and frees while
iInteracting with the target application

e Debugger/programmatic debugger
o Breakpoints at allocator’s malloc-like and free-like functions
o Logging details and continuing
m Size of allocation
m Returned address of allocation
m Address to be freed
m Backtrace
o Quite slow and error prone for real targets

CENSUS S.A. info@census-labs.com www.census-labs.com @



Dynamic interface mapping

e Utilize a dynamic binary instrumentation (DBI) framework like
PIN or DynamoRIO

o Many public examples available, everybody has their own

o Image based filtering

o Can be tweaked to be faster and less error prone than a debugger
o Only for userland target applications

e Kernel module that hooks kernel’s malloc-like and free-like

functions
o A lot of noise
o Manual stack unwinding to create filters
o Current version not very polished, but works

CENSUS S.A. info@census-labs.com www.census-labs.com @



Static interface mapping

Very useful to have the sizes of objects/structures
o To target reclaiming free “slots” on the heap

Source code of target and/or debug information (e.g.
PDB/DWAREF files) are sometimes available

We can parse the source code or the binary files with the
debug data for the sizes of object/structures

Clang for source code

PDB/DWARF parsers for binaries with debug information
o Microsoft’'s DIA (Debug Interface Access)
o lldb.utils.symbolication Python module

CENSUS S.A. info@census-labs.com www.census-labs.com @



Static interface mapping

e How to reach the allocations of the identified interesting

objects/structures?

e \We can use basic binary/source static analysis to find possible
call paths between the function that does the allocation and a
function we can interface to (Javascript API, system call, etc)

o Clang
o IDA/IDAPython
o Understand
e Fast and imprecise; no constraint collection/solving and/or

symbolic/concolic execution (more on this later)

CENSUS S.A. info@census-labs.com www.census-labs.com @




Interface primitives

Primitive #1: Allocate

Primitive #2: Free

Primitive #3: Allocate controlled size
Primitive #4: Allocate controlled type

CENSUS S.A. info@census-labs.com www.census-labs.com @



Mitigation: ProtectedFree

Microsoft has introduced a new heap exploitation
mitigation in Internet Explorer that breaks primitive #2
That is, our ability to interface from Internet Explorer to the
underlying allocator’s free operation

Per thread list that holds heap “slots” waiting to be freed

A free operation adds to the list instead of actually
deallocating memory (mark-and-sweep GC)

Introduces non-determinism to the interface

CENSUS S.A. info@census-labs.com www.census-labs.com @




Heap arrangement

e Depending on the bug, especially if it is a buffer overflow, we
need to be able to arrange the heap in a favorable (to our goal)
way

e \When the bug is triggered the heap must be in a predictable
state to position our data

e “Heap feng shui” (Sotirov) for web browsers

e Understand the allocator’'s behavior

o Runtime observation
o Reversing it's allocation/deallocation functions
o E.g.: FIFO, the first heap item freed is the first returned

CENSUS S.A. info@census-labs.com www.census-labs.com @




Heap predictability

e At any random given point in time the heap is in an
unpredictable state for us

e Using the interface primitives and our understanding of the
allocator’s behavior we build primitives that help us bring the
heap in a predictable state, e.q.

o A number of same-sized/typed allocations to “defrag” the
heap and get fresh heap “slot” containers (e.g. pages)

o Subsequent ones contiguous

o Free every other allocation to create free “slots”

o Just an example, study your target allocator

CENSUS S.A. info@census-labs.com www.census-labs.com @



Arrangement primitives

e Primitive #5: Force contiguous allocations
e Primitive #6: Create holes (free “slots”)
e Primitive #7: Reclaim a free “slot”

CENSUS S.A. info@census-labs.com www.census-labs.com @



Mitigation: g_hlsolatedHeap

Heap exploitation mitigation in Internet Explorer that
breaks primitive #7

Our ability to reclaim a “free” slot

Different heap for certain objects deemed probable of
being involved in use-after-free vulnerabilities

The obvious bypass here is of course to find a suitable to
our goal object that is allocated on the isolated heap

As all mitigations, this should be viewed in tandem with
the others (i.e. ProtectedFree)

CENSUS S.A. info@census-labs.com www.census-labs.com @




Metadata attacks

Building on heap arrangement primitives, we can position
controlled allocations next to memory used by the allocator for
its internal operation and bookkeeping

o Since heap overflows are quite common

o Or other ways, e.g. arbitrary inc/dec, etc

Corrupted metadata force unexpected allocator behavior that
can lead to exploitable conditions

These are obviously highly specific to the target allocator
However since most allocators follow similar designs,
experience has shown that ideas behind attacks are reusable

CENSUS S.A. info@census-labs.com www.census-labs.com @




Unlinking attacks

e Original unlink() attack by Solar Designer (2000)

o Old glibc unlink attack

unlink (P, BK, FD) Unlink (Entry)

{

{
BK = P->bk; // what
FD = P->fd; // where
FD->bk = BK; // *(where) = what
BK->fd = FD; // *(what) = where

CENSUS S.A. info@census-labs.com www.census-labs.com

Flink = Entry->Flink;
Blink = Entry->Blink;
Blink->Flink = Flink;
Flink->Blink = Blink;

//
//
//
//

o Windows kernel unlink attack

what
where
* (where) = what
* (what) = where

©




Force-return used attack

Some allocator designs are not linked list based
o jemalloc is a widely used bitmap based allocator

Arrays (bitmaps) are used to represent heap memory
areas

o Array elements are used to represent heap “slots”
o E.g. value of 1 for free, O for used

Metadata corruptions lead to controlled indexes
Indexing is mainly used to find the first free “slot”
We can force the allocator to return an already used “slot

7

CENSUS S.A. info@census-labs.com www.census-labs.com @



House of Force

e Phantasmal Phantasmagoria’s Malloc Maleficarum,
compendium of glibc heap exploitation techniques

e House of Force has some strict requirements, but is currently
unpatched
o Top chunk metadata (size) corruption (top chunk represents the

heap as a whole and grows/shrinks in size)
o Size-controlled allocation (influences the value of the returned
heap item)
o Another allocation (returns the heap item)
e \We force the allocator to return an arbitrary address

CENSUS S.A. info@census-labs.com www.census-labs.com @




Metadata attacks primitives

e Primitive #8: Unlink
e Primitive #9: Force-return used
e Primitive #10: Force-return arbitrary

CENSUS S.A. info@census-labs.com www.census-labs.com @



Adjacent region attacks

e \We build on the “force contiguous allocations” and the
“allocate controlled size/type” primitives
e (oal: place a vulnerable allocation

(buffer/object/structure) we can overflow from next to a
victim allocation we will overflow onto
o That will aid us in exploitation

o E.qg. string/array/vector object that we can corrupt its size field
o E.g. (virtual) function pointers

CENSUS S.A. info@census-labs.com www.census-labs.com @



Application-specific data attacks

e Heap exploitation mitigations are becoming increasingly
sophisticated and effective

e (Generic exploitation approaches relying on metadata
corruption are either

o Already patched/mitigated
o Patched/mitigated as soon as they become public

e Our target application (that uses the allocator) has
objects/structures with useful to exploitation data
o Function pointers are the canonical example of course
e Replace “function pointer” with X

CENSUS S.A. info@census-labs.com www.census-labs.com @




Function pointers, or X

Where X is any useful (to exploitation) construct

Develop heuristics to search for X during runtime in the heap

mappings of the target

o Function pointers are easy, others (e.g. vectors) quite possible
too

Use pageheap-like functionality to get the backtrace of the

allocation of the construct

o We know where it gets allocated

o We can find a call path to there from an interface point

Now we know how to allocate useful constructs

CENSUS S.A. info@census-labs.com www.census-labs.com @



Application-specific :) primitives

e Primitive #11: Force adjacent region allocations
e Primitive #12: Allocate useful construct

CENSUS S.A. info@census-labs.com www.census-labs.com @



Heap exploitation modeling

The identified primitives form a methodology that can be
manually applied when investigating a new target

How can we automate this methodology as much as
possible?

o Read “"automate” as “reduce human interaction”

The first step is to model the heap allocator

o What about the next allocator?

o Do we need to categorize the allocators and model then?
o Will the model(s) be practically useful?

Describe the identified primitives in this model

CENSUS S.A. info@census-labs.com www.census-labs.com @



Simple model

Model the heap as an array

Heap “slots” are array elements

Heap reads are array accesses

Heap writes are array updates

Metadata? Allocated or free?

Another array (bitmap) holding state

No straightforward modeling of more complicated metadata (or

their corruption)
o Linked-lists and unlink attacks for example
o Basically we need an array for every metadata variable/pointer

CENSUS S.A. info@census-labs.com www.census-labs.com @



Deterministic finite automata

A finite set of states (Q)
A set of symbols (S, input events, aka alphabet)

A set of transition functions (T)
o teT:QxS->Q

A start state g e Q

A set of final (or accepting) states F (subset of Q)
“Stop” or “dead” states are the states that are not
accepting, i.e. return themselves for any input

CENSUS S.A. info@census-labs.com www.census-labs.com @



Example (from Wikipedia)

e DFA: binary input, input must contain even
number of 0s

e Q={s1(even 0s), s2 (odd 0s)}

o S={1,0}

e (=51

e F={s1) S
o t= {t1} s2 s1 s2

CENSUS S.A. info@census-labs.com www.census-labs.com




DFA-based model

The allocator's metadata are modeled as the DFA’s transitions
The user data placed on the heap (“slots™) are the input
alphabet (symbols)

Metadata corruptions

o Corruption of the DFA’s transition tables

o Different (than expected) output state for the same input state and input symbol
o Attacker controls the state the DFA is in

Data (application-specific, function pointers, etc) corruptions
o Corruption of the input symbols

o Attacker controls which transition function is applied, so therefore indirectly the
state the DFA will reach

CENSUS S.A. info@census-labs.com www.census-labs.com @




DFA-based model

e \We can use proof by induction to show (prove)
that a property we are interested in is true (holds)
o For example that given an alphabet and a DFA that certain

states are reachable
o Which transitions must be corrupted and how

o Induction: prove base step (case 0), hypothesis (case 0 to
n), prove inductive step (case n+1)

e DFAs can be used for automated theorem proving
o We can check invariants for the set of transitions

CENSUS S.A. info@census-labs.com www.census-labs.com @



Practical considerations

e |It's not realistic to manually model all allocators we are interested
In
e DBI PIN tool (Moloch) to automatically construct the deterministic
finite automaton based on observed data, metadata, transitions
o This however does not provide a fully representative model of
the allocator
o Manual fine tuning of the model based on our understanding of
the allocator
o Remember that the goal is not full automation, but “reduced
human interaction”

CENSUS S.A. info@census-labs.com www.census-labs.com @



QUESTIONS

CENSUS S.A. info@census-labs.com www.census-labs.com @







