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Abstract—Binary diffing is the process of reverse engineering
two programs, when source code is not available, in order to study
their syntactic and semantic differences. For large programs,
binary diffing can be performed by function matching which,
in turn, is reduced to a graph isomorphism problem between the
compared programs’ CFGs (Control Flow Graphs) and/or CGs
(Call Graphs). In this paper we provide a set of carefully chosen
features, extracted from a binary’s CG and CFG, which can
be used by BinDiff algorithm variants to, first, build a set of
initial exact matches with minimal false positives (by scanning
for unique perfect matches) and, second, propagate approximate
matching information using, for example, a nearest-neighbor
scheme. Furthermore, we investigate the benefits of applying
Markov lumping techniques to function CFGs (to our knowledge,
this technique has not been previously studied). The proposed
function features are evaluated in a series of experiments on
various versions of the Linux kernel (Intel64), the OpenSSH
server (Intel64) and Firefox’s xul.dll (IA-32). Our prototype
system is also compared to Diaphora, the current state-of-the-art
binary diffing software.

I. INTRODUCTION

Binary diffing is the process of reverse engineering two
programs, when source code is not available, in order to
study their syntactic and semantic differences [15], [26], [27].
As the size of the programs increases, so does the com-
plexity of binary diffing, necessitating the use of automated
difference analysis methods. In these cases, binary diffing
can be performed by function matching of the two programs,
which assists in spotting critical differences and minimizes any
manual labor required to understand and process code and data
modifications between the examined executables.

Specifically, function matching is reduced to a graph
isomorphism problem [11] between the compared subjects’
CFGs (Control Flow Graphs), ICFGs (Inter-procedural CFGs)
and/or CGs (Call Graphs). Since graph isomorphism is known
to belong to the NP class, practical methods must be consid-
ered for creating a maximal set of matches and approximately
solving the graph isomorphism problem. In this paper, we
propose a set of carefully chosen function features extracted
from a binary’s CG and CFG, which can be used by BinDiff
algorithm variants [11], [12], [14] to (i) build a set of ini-
tial exact matches with minimal false positives by scanning
for unique perfect matches, and (ii) propagate approximate
matching information using, for example, a nearest-neighbor
scheme. The proposed features are evaluated in a series of

experiments on various versions of the Linux kernel (Intel64),
the OpenSSH server (Intel64) and Firefox’s xul.dll (IA-32).
Our prototype system is also compared to Diaphora [10].
The contributions of the current paper are the following:
(i) we provide a set of carefully chosen features; (ii) we
investigate the benefits of applying Markov lumping techniques
to function CFGs (to our knowledge, this technique has not
been previously studied).

The rest of the paper is organized as follows. Section II
gives a brief overview of previous work on the subject of
binary diffing. In Section III preliminary material is presented:
the mathematical notation and definitions we will use and the
assumptions we made while developing our prototype system.
A detailed description of each of the proposed features is given
in Section IV. Experimental results are presented in Section
V, followed by a brief summary and proposals for future work
in Section VI.

II. PREVIOUS WORK

Binary diffing has been used in the software engineering
industry for various purposes in several application domains.

1) Malware classification [3], [4], [20]. Given a pos-
sibly malicious binary executable, the problem is to
classify the subject as either innocent or suspicious.
At a higher level, malware classification works by
extracting various features from the analyzed binary
executable and locating matching candidates within a
large database of known, pre-analyzed malware samples.
As such databases may be hundreds of terabytes in
size, performance and effectiveness are both of great
importance in this application. With the number of
sophisticated cyber-attacks, ransomware, malware and
other forms of malicious software constantly increasing
[29], [30], both antivirus companies and independent
researchers have entered this research field.

2) Patch analysis [23]. Software complexity increases as
more features are implemented, especially in various
commercial software suites like Microsoft Office. At the
same time, security researchers need to quickly study,
analyze and evaluate product updates for the presence
of software vulnerabilities. In this case, binary diffing
comes in handy; by diffing shared libraries and binary



executables of the investigated system, pre- and post-
update, a security researcher practically minimizes the
set of changes that need to be studied.

3) Plagiarism detection. Not all applications of binary
diffing are related to computer security. Diffing methods,
applied both on source and executable code, have been
used in the past to detect plagiarism. Consider an online
system in a university where students submit solutions
to their assignments; a diffing technique may be used to
assign similarity scores to submitted solutions and even-
tually detect cheating students. In the software industry,
binary diffing has been employed in order to detect
copyright infringement and other forms of intellectual
property theft. [32]

4) Propagation of profiling information. As explained in
[35], [36], porting profiling information from an older
version of a program to a new one is an error prone and
time consuming process. Binary diffing techniques may
be used to port existing profile information, which was
initially assembled from a previous version of the same
program, to a newer one, thus allowing the software
testing team to only focus on evaluating new features of
a software suite.

Many binary diffing algorithms in the literature approach
the underlying graph isomorphism problem by separating the
diffing process in two phases.

1) During pre-filtering, two binary executables, the match-
ing candidates, are disassembled and their CGs are
recovered through a combination of well known disas-
sembly techniques. For each vertex in the two aforemen-
tioned CGs (that is, for each function in each executable)
the corresponding CFG is formed and a feature vector
is extracted. Then an initial 1-1 mapping between the
CFGs of the two matching candidates is formed by
looking for unique entries in the aforementioned feature
vector sets. This initial mapping constitutes a set of
fixed points and effectively reduces the problem space by
decreasing the number of possible vertex permutations
theoretically required to find the isomorphism between
the two CGs. The higher the number of detected fixed
points and matching ratio, the better the binary diffing
results.

2) In the propagation phase, the initial 1-1 mapping is
expanded. This is done by examining neighbors of
already matched vertices in the compared CGs. Neigh-
bors which, according to their features, match exactly
or differ only slightly, are added in the mapping thus
expanding the isomorphism. Exact differences between
the compared executables are then spotted by examining
each basic block of each matched CFG. Such algorithms
are usually referred to as BinDiff variants.

For example in [35], [36] a series of heuristics of various
fuzziness levels is used to form a 1-1 mapping of functions. As
a second step, the aforementioned mapping is used to narrow
down the problem space by matching basic blocks of matched

procedures. Another notable example is the work of Dullien et
al. in [11], [12], [14]. Feature vectors (composed of the number
of vertices and edges as well as the out-degree of each CFG)
are formed and used to locate perfect matches in the compared
executables. Later publications [2], [13] extend Dullien’s work
by adding or modifying features in the aforementioned feature
vector. Variants of these algorithms have been extensively used
in commercial tools like Zynamics BinDiff [37]. Last but not
least, consider Diaphora [10] an open source application and
nowadays the industry standard in binary diffing. It uses a
set of several graph metrics, computed over function CFGs,
to match unique functions in two executables; it should also
be mentioned that Diaphora does not implement any kind of
propagation phase.

There are other binary diffing algorithms as well; some
of them based on dynamic analysis techniques [26], [27],
others use back-tracking [35], [36], MCS-based algorithms
[13] and others follow a more simplistic simulated annealing
approach [25]. Even though our work is mostly applicable to
BinDiff algorithm variants, it may be possible to apply it to
the abovementioned algorithms.

III. PRELIMINARIES

A. Graph Theory Preliminaries

We define a program p to be a set of N functions;
p = {fi | i = 0, 1, ..., N − 1}. Binary diffing involves
comparing two programs, namely p1, the primary subject,
and p2, the secondary subject, and forming a 1-1 mapping
M , that correlates functions of p1 with functions of p2,
M = {fp1

i → fp2

j | i < |p1|, j < |p2|}.
We represent digraphs (i.e., directed graphs) with the no-

tation G =
〈
V,E

〉
, where V is the digraph’s vertex set and

E ⊆ V × V is the digraph’s edge set (or arch set). Given
a vertex v ∈ V , we define the set of successors of v as
succ(v) = {s | (v, s) ∈ E} and the set of predecessors of
v as pred(v) = {p | (p, v) ∈ E}. In the following, we give
definitions for various digraph types encountered in programs’
analysis.

For each function f , in a program p, we define a digraph
CFGf =

〈
VCFGf

, ECFGf

〉
, where VCFGf

is the set of f ’s
basic blocks (straight-line machine code sequences with no
branches in, except to the entry, and no branches out, except
at the exit). The set of edges ECFGf

denotes the possible
execution flow paths between the function’s basic blocks. If
e = (bsrc, bdst) ∈ ECFGf

, then control flow can reach basic
block bdst immediately after bsrc (i.e., bdst ∈ succ(bsrc)).
Digraph CFGf is usually referred to as f ’s Control Flow
Graph. 1

A program p can also be treated as a digraph of digraphs,
referred to as the program’s Call Graph, or CG for short.
CGp, of program p, is a digraph whose vertices correspond
to individual function CFGs, that is VCG = {CFGf |

1Even though the CFG (and the CG mentioned in the sequel) are digraphs
we will follow standard usage and call them graphs. In general, any “graph”
mentioned in this paper will be a directed graph, unless explicitly mentioned
otherwise.



f ∈ p}. For each control transfer instruction in basic block
bsrc ∈ VCFGfsrc

that transfers execution to basic block bdst ∈
VCFGfdst

, where fsrc 6= fdst
2, an edge (CFGfsrc , CFGfdst)

exists in ECG.
When traversing a digraph, be it a CFG, a CG or any

other digraph type, it is often useful to enforce an ordering
in the way digraph edges or vertices are visited. During a
DFS traversal, for example, it may be imperative to sort
succ(v)∀ v ∈ V under a certain ordering, so that, neighbor
vertices are visited in a certain fashion. In the following, we
make the assumption that, whenever succ(v) or pred(v) is
used, the corresponding vertex sets are returned ordered by
their addresses in the program’s virtual address space. That
is, if succ(v) = {s0, s1, ..., sn−1} for some v ∈ V , then
address(s0) < address(s1) < ... < address(sn−1), where
address : V → N, a function defined over V , that returns the
address of a vertex in program memory.

B. Markov Preliminaries

A Markov process is a stochastic process that satisfies the
Markov property; the probability of the process entering the
next state, depends only on the present state. Markov processes
are usually represented using a two-dimensional transition
matrix (or stochastic matrix) with elements

∀i, j : pij = Pr(Process enters state j |Process is in state i),

called the process’ transition probabilities. Extensive treat-
ments of Markov processes appear in [18] and [19]. In the rest
of the paper, the terms Markov system and Markov process are
used interchangeably.

Markov systems with a high number of states result in
extremely large transition matrices, which introduce compu-
tational complexities. For this purpose, a technique referred
to as lumping has been proposed. Lumping is used to merge
equivalent states from the original Markov system into super-
states, called components, of a new system, also obeying the
Markov property. The new system (which generally is an
abstraction of the old one and thus introduces information loss)
is then used for applying standard Markov analysis algorithms.

For any two components Pi and Pj of a lumped Markov
system, the following property holds true:

∀n1, n2 ∈ Pi :
∑
s∈Pj

pn1s =
∑
s∈Pj

pn2s

Several algorithms for testing and computing the lumpabil-
ity of a Markov system have been proposed, with [9] and [34]
being two notable examples.

C. Oracle Preliminaries

In order to test the effectiveness of the proposed features and
evaluate our algorithm, we need to establish some ground truth
on the function matching results. Towards this, we make use
of an oracle oracle : p1×p2 → {True, False}, defined over

2Examples of such control transfers where fsrc = fdst, are sometimes
used by compilers emitting PIC code and should be ignored.

the two compared subjects, p1 and p2. Given two functions
fp1 and fp2 :

oracle(fp1
, fp2

) =

{
True if fp1

= fp2

False otherwise

Practically, the oracle defined above, can be used to tell
whether a match, reported by our algorithm, is valid or not.
Implementing such an oracle, for experimental use, is of
paramount importance to our overall evaluation. The most
simple approach involves making use of debug information
embedded in the binary executables under comparison. For
each reported match, the two function names are extracted
from each executable’s debug section, demangled and checked
for equality. If the two names are identical, or if they are
sufficiently similar (e.g. their Levenshtein [28] distance is
small), the match is considered successful.

D. Assumptions

In the rest of the paper, we make the following assumptions:
1) Compared binaries come with no debug information

whatsoever. In our experiments, debugging information
was only used as an oracle for evaluating the soundness
of matching results.

2) Source code of compared subjects is not available.
3) We only consider exact, perfect matches, discovered

using a simple matching algorithm that resembles [5],
[6], [7].

4) Even though our algorithm has good execution times,
speed is not our primary interest. Even if binary diffing
takes more than, say, 24 hours to complete, it still saves
hundreds of man hours of manual labor.

5) Compared binaries should be neither obfuscated nor
packed. Initial pre-processing steps of de-obfuscating
and unpacking the the executables may be necessary.
In fact, such preparatory steps have been used in the
past by various authors (e.g. [3], [4], [20]).

IV. FEATURES

For each function in each binary executable, we extract a
feature vector composed of 9 features. Some of the aforemen-
tioned features give an abstract view of the CFG’s structural
characteristics (vertex and edge classification, graph signa-
tures), others reflect its spatial characteristics (inlinks, outlinks,
lumped transition matrix) and others its semantic content
(instruction and data histogram). In the following sections, we
elaborate on each one in more detail.

A. Vertex and Edge Classification

In previous publications [2], [11], [12], [13], [14], feature
vectors extracted from function CFGs, among others, include
two features that reflect a digraph’s overall structure; the
number of vertices (basic blocks) and the number of edges in
the corresponding function. The aforementioned features, even
though naive at first sight, are good examples of two important
structural characteristics that can significantly speed up the
pre-filtering phase, by discarding candidates with incompatible



(a) (b)

(c) (d)

Fig. 1: Several example CFGs. They all share the same number
of vertices and edges, yet, we need to come up with ways of
distinguishing one from another.

vertex and edge counts during the early stages of diffing. At
the same time, however, their pruning power is limited and
they can easily introduce non-negligible inaccuracies and/or
latencies in the overall process.

Take the digraphs depicted in figures 1(a) and 1(b), for
example. These figures show two arbitrary digraphs which
might, as well, be the CFGs of two functions under com-
parison. They are both composed of 6 basic blocks and 7
edges. Consequently, a traditional BinDiff algorithm variant
would pick those two as potential matching candidates. Notice
their obvious differences, however. Figure 1(a) represents a
function that executes linearly. On the contrary, 1(b) shows the
CFG of a function, whose basic block F traps the execution
flow; it might be a dispatch loop (e.g. malware virtualization
obfuscation dispatch loop as described in [27]), or a no-
return vertex (as recognized by IDA Pro [16]). We, thus, need
a better way of distinguishing CFGs by certain topological
vertex characteristics.

Towards this, instead of using the number of vertices as a
feature, we came up with the following taxonomy of vertices:

1) Normal. All vertices, including those that do not belong
to any of the remaining categories.

2) Entry points. Vertices which are CFG entry points, that
is, program execution enters the function in question via
one of these vertices. Notice that a single function may

have more than one entry points.
3) Exit points. Control flow leaves the corresponding

function via one of these basic blocks (e.g. basic blocks
ending with a RET instruction, or a CALL instruction
when tail-call optimization is used). Each function may
have several exit points.

4) Traps. Every vertex with a single edge looping into
itself.

5) Self-loops. Vertices with an edge to themselves that also
have edges to other vertices. Notice that traps, defined
above, are also self-loops.

6) Loop heads. Loops’ header [31] vertices.
7) Loop tails. Vertices within a loop’s body [31] with edges

to the loop’s header.
Categories in the above taxonomy are not mutually exclu-

sive; a basic block may belong to more than one at the same
time.

The first proposed feature is a vector with 7 elements.
The element at index i holds the number of vertices of
category i defined above. So, for example, the first feature
extracted from the digraph at 1(a) is

[
6 1 1 0 0 0 0

]
.

The corresponding feature extracted from figure 1(b) is[
6 1 1 1 0 0 0

]
. Clearly, by taking into account this

kind of classification, the two CFGs are not similar and, thus,
cannot be considered matching candidates.

Now consider figure 1(a) and 1(c). Both digraphs have
the same number of vertices and edges. Additionally, both
digraphs are only composed of normal vertices, a single entry
point and a single exit point (according to the previously
defined taxonomy), yet they are very different. As opposed
to 1(a), 1(c) looks like a function that, probably, performs
some kind of sanity checking on its input arguments and, if
checks are not passed, execution flows directly to basic block
F, which happens to be the function’s exit point. Once again
we are faced with the same problem; we need more robust
features for telling the difference between 1(a) and 1(c). The
number of edges alone, is not enough for performing this task.

To solve this problem we adopted a taxonomy of edges,
similar to this originally described by Tarjan [33]. Briefly,
using DFS traversal, we classify edges into the following
categories:

1) Basis edges. Suppose there exists a topological sort of
the vertices of graph G =

〈
V,E

〉
and a DFS which

respects this topological sort such that: if (u, v) ∈ E
then depth(u) < depth(v) unless v is an ancestor of u
1 (the graph layouts of figures 1(a)-1(d) satisfy the above
requirement). Then (u, v) is a basis edge if depth(v) =
depth(u) + 1.

2) Forward edges. Like basis edges above but depth(v) >
depth(u)+1. Forward edges connect ancestors with non-
direct descendants.

3) Back edges. Back edges connect descendants with their
ancestors (i.e. depth(v) < depth(u)). Self-loops are

1Where the depth() function is the one resulting from the aforementioned
DFS.



(a)

(b)

Fig. 2: Immediate dominator trees for 1(c) and 1(d).

also, sometimes, considered back edges as well.
4) Cross-links. Edges between vertices belonging to dif-

ferent DFS sub-trees.
Accordingly, we propose a second feature, a vector of 4

elements. Element at index i holds the number of edges falling
in category i. As such, 1(a) is described by

[
7 0 0 0

]
while 1(c) by

[
6 1 0 0

]
. As it can be seen, the two CFGs

can now be separated.

B. Digraph Signatures

The exact vertex and edge classification features of two
digraphs do not give any insight on how the latter are actually
layed out. Consider 1(c) and 1(d). Both digraphs have a ver-
tex classification feature vector of

[
6 1 1 0 0 0 0

]
and an edge classification feature vector of

[
6 1 0 0

]
.

Distinguishing these two digraphs based solely on the two
aforementioned features is not feasible. After all, 6 vertices
and 7 edges may be combined in several ways in order to
form a digraph.

Careful readers, however, would have probably noticed that
the two aforementioned digraphs differ in their dominance
relations. For example, in figure 1(c), the immediate dominator
of vertex F is A, while in figure 1(d) is D. The dominator trees
of figure 1(c) and 1(d) can be seen in 2(a) and 2(b) respec-
tively. Encoding this information in a feature will bring out
the obvious difference between the two compared digraphs.

In our implementation, we follow a very simple, yet effec-
tive, approach. We first build the immediate dominator tree of
the subject digraph and, then, visit its vertices in a depth-first
fashion. During the DFS traversal, we incrementally construct
a bit-vector that reflects the digraph’s layout in the following
way; whenever a vertex is first visited, we append a 1 to the
bit-vector. When DFS leaves the vertex in question, a 0 is
appended. For example, given 2(a), a DFS traversal of A B C

(a)

(b)

Fig. 3: Example of (a) assembly instructions and (b) their
instruction forms.

E D F, produces the bit signature 110101100100, or D64 in
hexadecimal. Similarly, in 2(b), traversing the vertices in the
order A B C E D F produces the bit signature 110101110000,
or D70 in hexadecimal.

The next two features we propose are the bit signatures
of both the original function CFG and its immediate domi-
nator tree. The corresponing features extracted from 1(c) and
1(d) are the hexadecimal numbers F84, D64 and F84, D70
accordingly. Notice how, in this specific example, the CFG
signatures happen to be the same and the two functions only
differ in their dominator trees. It should be noted that, in the
public literature, more elaborate signature schemes have been
used [4] for the purpose of indexing graph structures. Such
schemes are also applicable in our case.

C. Inlinks & Outlinks

For each vertex in the program’s CG we add two more
features to our feature vector, the number of inlinks (number
of callers of this function) and the number of outlinks (number
of CALL instructions in the function body). Most previous
publications only use the latter. Following the example of few
previous publications ([4], [13]), we also include the first in
our feature vector as a logical step towards a more complete
solution.

D. Instruction Histogram

Features discussed so far can be used to match two digraphs
based solely on structural characteristics. Ideally, we would
also like a feature that encodes an abstraction over the semantic
content of a function. For example, in [13], the authors present
a promising system called discovRE, which classifies instruc-
tions in 4 categories based on their functionality (arithmetic,



logic, data transfer, redirection). This classification is then
used in a 4-element feature vector identifying each function
in the program’s CFG. Even though we believe this to be the
right choice, separating instructions in a so abstract taxonomy
results in extended information loss and consequently in
reduced unique matches.

Based on this idea, and as we are currently only targeting the
IA-32 and Intel64 architectures, we make use of Intel’s XED
library [21] and pyxed [24] to classify instructions based on
their instruction form. As opposed to the classification used in
[13], the instruction form also gives an overview of the type
of operands used in each instruction, effectively abstracting
away constant values and register names. Last but not least, the
histogram of the distribution of instruction forms is computed
and appended in each function’s feature vector.

Figure 3(a) shows a random function, consisting of a single
basic block, taken from a compiled Linux kernel binary. Figure
3(b) shows the same function, however, instructions have now
been replaced with their instruction forms. The exact meaning
of the instruction form constants are outside of the scope of
this paper (interested readers can see [22]).

E. String Histogram

Functions usually perform simple operations with ASCII
strings. Consider, for example, a function that calls printf().
The first argument passed to printf(), also referred to as the
format string, is usually a constant value. Such distinctive
constants are extremely useful for reverse engineers as they
can disclose a wealth of information for the inner workings
of a function. In binary diffing, examining the string constants
referenced from a CFG can reveal potential matching candi-
dates in the two compared subjects and, thus, it would be
beneficial to encode this information in our feature vector as
well.

An obvious, yet naive, choice is to extend each feature
vector with all strings accessed by the corresponding function.
This, however, comes with two drawbacks: (i) the overall
size of the feature vector is increased linearly with respect
to the number of strings accessed by a function and (ii)
computing a similarity metric between the feature vectors of
two functions becomes more complicated, as one has to resort
to computing a similarity score between individual strings.
Instead, we compute the histogram of all characters in all
strings accessed by the examined function and use the result
as a feature. This allows for detecting exact matches more
efficiently, by just comparing two histograms for equality, and
partial matches more naturally, by, for example, using a cross-
entropy metric to compute a similarity score between two
seemingly unrelated histograms.

This feature can be thought of as an abstraction over a subset
of the program’s data elements manipulated by the function in
question. Additionally, it can be extended to take into account,
not only strings, but any type of constant data accessed by
a function. Such an approach, however, comes with many
complications which are outside of the scope of this paper.

F. Markov Lumping of CFGs
The idea of treating a CFG as a Markov system is not

new [8]. Each basic block, in a function CFG, is assumed
to be a separate state and each edge a transition with a
certain assigned probability. What is most important in such a
treatment, however, is the model/assumptions used in order to
assign the aforementioned transition probabilities. Care must
be taken as this will eventually affect the effectiveness of the
overall analysis and the soundness of its results. For example,
at [8] (figure 15-11), the edge weights of the example program
seem to be known in advance and no insight on how they
were deduced is given. When specific program inputs are not
known, determining the probability of a program reaching a
specific state is generally undecidable.

At a higher level, outgoing transition probabilities, at state
i of a Markov system with n > 0 transitions, are just a set of
numbers obeying the following properties:

∀i :

n−1∑
j=0

pij = 1, ∀i, j : 0 ≤ pij ≤ 1.

Having said that, probabilities need not be treated nec-
essarily as the likelihood of a system actually transitioning
from one state to another; they can instead be understood
as general weights, whose actual interpretation depends on
the application domain and reflects the relationship between
the source entity and the destination entity. For our purposes,
the entities in question are, in fact, basic blocks and the
various weights might be computed based on their properties.
The resulting transition matrix can, then, be viewed as a
summary of the system’s overall entity relationships and
standard Markov analysis tools may be used to evaluate it.
It should also be noted that such a transition matrix reflects
the corresponding CFG’s spatial characteristics, as each pij
quantifies the relationship between i and one of its neighbors.
By extracting and comparing the stochastic matrices of two
CFGs, we can gain an insight on how similar or different the
corresponding functions are.

During our experiments, we evaluated the following weight
assignment schemes:

1) A simple scheme where each transition receives a uni-
form probability. We did not find this scheme to be of
any practical use, apart from an analysis similar to the
one described at chapter 15-3 of [8].

2) A scheme where edges towards basic blocks with
a higher number of instructions are assigned larger
weights. The rationale behind this choice is that, com-
puter programs generally receive and process user input
and, thus, execution is more likely to reach a basic block
with more instructions, as this is where, most probably,
actual processing might take place. Even though this
scheme gives a more detailed overview of the CFG’s
layout, it is inappropriate for detecting exact matches, as,
small re-arrangements of instructions result in significant
changes in the transition matrix. This, however, makes
it more suitable for detecting inexact matches.



3) The last approach involves taking into account various
locality optimizations [1], that the compilers (which
built the executables under comparison) might have
performed. During certain optimization passes, a func-
tion’s CFG may be split into several chunks which
might be placed in distant physical locations within the
executable (and consequently in distant virtual memory
addresses as well). Basic blocks are distributed among
the aforementioned chunks, according to the compiler’s
view of how often each one might be reached when
the function in question is executed. Practically, this
technique splits a function into hot paths, that are highly
likely to be executed, and cold paths, which are less
likely to be reached.
In this scheme we assign a uniform probability to each
outgoing transition (like weight assigning scheme 1
above), but we give lower weights to CFG edges leading
to basic blocks that belong to distant function chunks
(where distance is measured by the addresses the code
is located). This choice seems natural, as this is actually
in accordance with the rationale used by an optimizing
compiler when building the executable.

Of the three schemes described above, we found the third
to be the best trade-off between accuracy and matching power.
Algorithm 1 shows the actual process of assigning weight
values to the edges of an arbitrary CFG.

Algorithm 1 Weight assignment

1: procedure assign edge weights(CFGf )
2: chunks← cfg chunks(CFGf )
3: chunk weights← {|chunks|, |chunks| − 1, ..., 1}
4: for all v ∈ VCFGf

do
5: weight← 0
6: for all s ∈ succ(v) do
7: i← chunk index(chunks, s)
8: weight← weight + chunk weights[i]

9: weight← 1/weight
10: for all s ∈ succ(v) do
11: i← chunk index(chunks, s)
12: (v, s)weight = weight ∗ chunk weights[i]

Algorithm 1 begins by retrieving the list of chunks of
function with CFG CFGf and stores them in variable chunks
(line 2). For chunk i, chunk weights[i] contains an initial
reference weight (line 3). For example, for a function with 4
chunks, the first chunk (index 0) is given a weight of 4, the
highest weight, while remaining chunks are given successively
lower weight values ranging from 3 to 1. The core of the
algorithm consists of a single loop that traverses all CFG
vertices (line 4). For each vertex, the sum of its edge weights
is assembled in weight by examining its successors’ chunk
indexes one by one (line 8). Last but not least, weight is
converted to a weight factor (line 9), which is then multiplied
with the corresponding weight of each successor’s chunk (line
12) to give the final value of an edge’s weight.

Before a lumping algorithm can be used, the states of the
original system have to be split in a set of, so called, initial
components P0 = {P0,0, P0,1, ..., P0,N−1}. Our reference
implementation begins by distributing basic blocks into com-
ponents so that no basic block is in the same component with
any of its successors (except if the basic block in question has
a self-loop):

∀v ∈ VCFGf
: v ∈ P0,i ⇒ (succ(v)− {v}) ∩ P0,i = Ø

Algorithm 2 Initial partitioning algorithm

1: procedure find component(v, P0)
2: Q← Ø
3: for all P ∈ P0 do
4: if (succ(v)− {v}) ∩ P = Ø then
5: r ← True
6: for all q ∈ P do
7: if v ∈ succ(q) then
8: r ← False
9: break

10: if r = True then
11: Q← P
12: break

return Q

13: procedure process component(P, P0)
14: change← False
15: for all v ∈ P do
16: if (succ(v)− {v}) ∩ P 6= Ø then
17: change← True
18: P ← P − {v}
19: Q← find component(v, P0)
20: Q← Q ∪ {v}
21: if Q /∈ P0 then
22: P0 ← P0 ∪ {Q}

return change

23: procedure create initial components(CFGf )
24: P0 = {VCFGf

}
25: change← True
26: while change = True do
27: change← False
28: for all P ∈ P0 do
29: change← change ∨ split(P, P0)

return P0

Algorithm 2, which is composed of several procedures, is
responsible for returning the set of initial components given
an arbitrary CFG. We begin our description from procedure
find component(). Given the current set of components P0

and an arbitrary CFG vertex v, find component() iterates
through all components defined so far (line 3) and locates one
which contains vertices (i) that are not v’s successors (line
4) (ii) that do not have v as successor (line 6). If no such
component exists, the empty set is returned.



Procedure process component(), as its name suggests,
processes one component P ∈ P0. It iterates through all
vertices in P (line 15) and looks for incompatibilities (line
16). If such an incompatibility is found, the vertex under
examination is removed from its component (line 18) and a
another, compatible, component is looked up (line 19). Recall
that, if no compatible component is found, a new empty set is
returned. Continuing, v is added to the newly found component
Q (line 20) and the latter is added in the component set if
not already there (line 22). Practically, process component()
splits P into one compatible and several incompatible parts.
The incompatible vertices are moved to either a new compo-
nent, or an existing compatible one.

The main procedure of algorithm 2, which we have named
create initial components(), is just a fixed-point loop that
processes components one-by-one, until no more components
can be split.

Last but not least, we apply a standard lumping algorithm
[9], in order to refactor the sets in P0, and use the lumped
system’s transition matrix as our feature vector’s last element
(other matrix characteristics, like its eigenvalues, might be
used instead). For a simplified overview of the overall lumping
process, see algorithm 3. The procedure markov lumping()
is the one described in [9].

Algorithm 3 Overall lumping

1: procedure lump(CFGf )
2: P0 ← create initial components(CFGf )
3: P ← markov lumping(P0) return P

V. EXPERIMENTAL RESULTS

Our proof of concept implementation, which was developed
with the sole purpose of demonstrating the effectiveness of
the proposed features, consists of two utilities, along with
accompanying helper libraries, all coded in Python. The first
utility is an IDA Python plug-in for IDA Pro, which also
makes use of pyxed [24], the Python bindings library for Intel’s
XED, in order to bypass the various limitations that the built-in
IDA Pro disassembler API suffers from. It extracts the feature
vectors of all functions found in an IDA Pro database and
saves them in a standard Pickle format. The second utility
is the main program that, given the two pickle files of two
IDA Pro databases, performs the matching process using the
greedy algorithm 4. The helper libraries are simple Python
modules that implement various graph theory abstractions and
algorithms. The overall implementation consists of about 1800
lines of Python code.

Algorithm 4 consists of two procedures, namely match(),
the main entry point, and match fvs() which performs a
single round of our overall matching process. We start by
describing the first. Lines 19 and 20 build two key-value
datastructures that map program functions to their feature
vectors, as extracted by our tools, for programs p1 and p2,
named FVp1

and FVp2
respectively. In each matching round,

match fvs() is called three times. One for detecting unique

Algorithm 4 Greedy matching algorithm

1: matches← 0
2: mismatches← 0

3: procedure match fvs(FVp1
FVp2

)
4: M ← Ø
5: for all (fvp1

, fvp2
) ∈ FVp1

× FVp2
do

6: if fvp1
= fvp2

then
7: if |{fvp1} ∩ FVp1 | = 1 then
8: if |{fvp2} ∩ FVp2 | = 1 then
9: fp1

← FV −1p1
[fvp1

]
10: fp2

← FV −1p2
[fvp2

]
11: M ←M ∪ {fp1

→ fp2
}

12: FVp1 ← FVp1 − {fp1 → fvp1}
13: FVp2 ← FVp2 − {fp2 → fvp2}
14: if oracle(fp1

, fp2
) = True then

15: matches← matches + 1
16: else
17: mismatches← mismatches + 1

return M

18: procedure match(p1, p2)
19: FVp1

← {f → fvf | f ∈ VCGp1
}

20: FVp2 ← {f → fvf | f ∈ VCGp2
}

21: do
22: M ← match fvs(FVp1 , FVp2)
23: while |M | increases do
24: for all fp1

→ fp2
∈M do

25: FV ′p1
← {FVp1

[f ] | f ∈ succ(fp1
)}

26: FV ′p2
← {FVp2

[f ] | f ∈ succ(fp2
)}

27: M ←M ∪match fvs(FV ′p1
, FV ′p2

)
28: FV ′p1

← {FVp1 [f ] | f ∈ pred(fp1)}
29: FV ′p2

← {FVp2
[f ] | f ∈ pred(fp2

)}
30: M ←M ∪match fvs(FV ′p1

, FV ′p2
)

31: while M 6= Ø

matches in the, still unmatched, feature vector sets (line 22)
and twice for matching the successors and predecessors of
already matched functions (lines 27 and 30). This process is
repeated as long as new entries are added in M (line 23), a
third datastructure that temporarily maps functions from p1 to
functions of p2.

Lines 5-8 in match fvs() iterate through the input feature
vectors and try to match elements that appear once in both
multisets. In such an event, the corresponding functions are
retrieved (lines 9 and 10), the set of matches M is updated
(line 11), and the feature vectors are removed from their
multisets (lines 12 and 13). Last but not least, if our oracle
signifies a match (line 14), the number of correct matches
is updated (line 15). On the opposite case, the number of
mismatches is increased instead (line 17).

To further stress the effectiveness of our features, we
decided to compare our implementation with Diaphora, the
current industry standard in binary diffing, developed by Jox-



TABLE I: Test corpus information.

Software Architecture Compiler

Linux 4.4.1 Intel 64 GCC 6.3.1
Linux 4.4.40 Intel 64 GCC 5.4.0
Linux 4.4.40 Intel 64 GCC 6.3.1
Firefox xul.dll 41.0 IA-32 MSVC
Firefox xul.dll 44.0.2 IA-32 MSVC
OpenSSH 7.0 Intel 64 GCC 4.8.4
OpenSSH 7.6 Intel 64 Clang 700.1

Software Functions Chunked functions

Linux 4.4.1 39661 71 (0.179%)
Linux 4.4.40 39723 70 (0.176%)
Linux 4.4.40 39727 72 (0.181%)
Firefox xul.dll 41.0 168113 12641 (7.519%)
Firefox xul.dll 44.0.2 178032 13421 (7.539%)
OpenSSH 7.0 2515 0 (0.000%)
OpenSSH 7.6 1755 0 (0.000%)

ean Koret. Additionally, since we are only interested in finding
exact matches, we only compare our tool with Diaphora’s
capability of detecting such perfect matches and set the latter
to ignore function names in executables that come with debug
symbols. Given the Diaphora results in an SQLite format, we
count the number of perfect matches by using the following
SQL query:

SELECT COUNT(*) FROM results WHERE type = "best";

Names of matched functions, however, have to go through
the same oracle that was used for evaluating our own imple-
mentation, which in this case, is just a matter of augmenting
the above SQL query with the following additional predicates:

SELECT COUNT(*) FROM results WHERE type = "best"
AND (name = name2 OR

name LIKE "sub_%%" OR
name2 LIKE "sub_%%");

Briefly, the above query assumes that a match is correct
only as long as the two function names either match exactly,
or any of the two has the sub prefix, automatically assigned
by IDA Pro to functions which lack debugging information.
Such pairs are, for the sake of this experiment, considered
valid matches, as there is no easy way of manually verifying
the subjects’ similarity.

Our test corpus is presented in table I where one can
see the architecture, the compiler used and the number of
functions and chunked functions in each executable. All of the
following open source projects where built without explicitly
disabling compiler optimizations (the optimization level used
is either the one hardcoded in each project’s Makefile, or the
default used by the corresponding compiler). The experiments
we performed are listed below and corresponding results are
shown in table II (first column on the left holds the experiment

TABLE II: Summary of experimental results.

Tool Time Matches Mismatches

1 Our Approach 1720s 32958 (83.099%) 0 (0.000%)
Diaphora 5999s 32726 (82.514%) 71 (0.179%)

2 Our Approach 1965s 20505 (51.700%) 10 (0.025%)
Diaphora 5845s 18943 (47.762%) 175 (0.441%)

3 Our Approach 1953s 21466 (54.039%) 8 (0.020%)
Diaphora 5814s 20587 (51.826%) 150 (0.378%)

4 Our Approach 48834s 79395 (47.227%) 1966 (1.169%)
Diaphora 99940s 73638 (42.802%) 2774 (1.650%)

5 Our Approach 1s 2 (0.114%) 2 (0.114%)
Diaphora 298s 0 (0.000%) 1 (0.057%)

number as listed below).
1) Linux 4.4.1 against Linux 4.4.40 both compiled with

GCC 6.3.1.
2) Linux 4.4.1 compiled with GCC 6.3.1 against Linux

4.4.40 compiled with GCC 5.4.0.
3) Linux 4.4.40 compiled with GCC 5.4.0 against Linux

4.4.40 compiled with GCC 6.3.1.
4) Firefox xul.dll 41.0 against Firefox xul.dll 44.0.2.
5) OpenSSH 7.0 compiled with GCC 4.8.4 against

OpenSSH 7.6 compiled with Clang 700.1.
In the first experiment we can see that Diaphora detected

32726 perfect matches in 5999 seconds, while our tool 32958
in 2259 seconds. Evidently, our tool performs about 2.5 times
faster and detects 232 more perfect matches. However, as it can
be seen, both tools perform very well, as they manage to match
about 82-83% of the functions found in the kernel binary. The
Linux kernel source code is very strictly organized and all
commits go through scrutiny before being accepted. Kernel
developers are not allowed to make groundbreaking changes
and they have to stick to specific rules when writing code.
This makes the Linux kernel source code ideal for evaluating
greedy algorithms like algorithm 4. Another interesting thing
to note is that, according to our oracle, our tool detected no
false positives, while Diaphora detected 71.

The next experiment involves comparing the same Linux
kernel versions as before, but one of the two is now compiled
with an older GCC version. More specifically, we compare
Linux 4.4.1 compiled with GCC 6.3.1 against 4.4.40 compiled
with GCC 5.4.0. In this case, our tool detects 1562 more
matches in 3880 seconds less with only 10 false positives.

The third Linux kernel experiment is also a very interesting
example, showcasing the effects of different compiler versions
used on the same kernel source tree with the exact same
kernel configuration. Obviously, since we only look for exact
matches, we cannot expect the two binaries to match perfectly,
as even minor variances in versions of GCC might introduce
different compile-time optimizations. Once again, our proof-
of-concept tool outperforms Diaphora, both in speed and
efficiency. Diaphora finds 20587 best matches in 5814 seconds



(51.826% of all functions), while our tool 21466 in 1953
seconds (54.039%). The number of false positives detected by
our tool is, again, classes of magnitude less than Diaphora’s
(8 vs. 150).

In our fourth experiment we used our approach and Di-
aphora on an even larger sample, namely Firefox’s xul.dll,
a shared library responsible for implementing the browser’s
core functionality. Developed in C++, xul.dll is an ideal
sample for evaluating the two tools, as the various high
level C++ constructs usually result in complicated series of
assembly code instructions that may vary greatly from version
to version. Also notice that, according to table I, MSVC
seems to split functions in chunks far more often than GCC
and, thus, in this experiment, our lumped Markov transition
matrix plays an important role. We compared xul.dll version
41.0 against version 44.0.2 consisting of 168113 and 178032
functions respectively. Diaphora completed in about 27 hours,
found 73638 best matches (42.802%) and 2774 false positives
(1.650%). Our tool completed in about 13.5 hours (48834
seconds) and reported 79395 perfect matches (47.227%, 5757
more than Diaphora) and 1966 false positives (1.169%, 808
less than Diaphora).

Last but not least, experiment 5, involves comparing dif-
ferent OpenSSH versions compiled with two different com-
pilers on two different operating systems. The purpose of
this experiment is to stress test our tool’s fault tolerance.
As we can see, our tool detects 2 best matches and 2 false
positives while Diaphora 0 and 1 respectively. Both tools
perform reliably and, as expected, they detect only minimal
similarities. It should be noted that, even though several parts
of the programs are semantically equivalent, their assembly
instructions differ significantly. This is the reason both tools
cannot detect similarities.

VI. CONCLUSION

We have presented efficient features that can be used to
perform function matching in two compared programs. We
have empirically shown the claimed effectiveness by com-
paring our proof-of-concept function matching software with
Diaphora, the leading industry standard in binary diffing. More
specifically, we have compared the two tools’ abilities to
discover exact matches between compared executables.

Many questions still remain unanswered however. First and
foremost, coming up with equally efficient distance metrics
for the proposed features is a very challenging task and the
subject of our future research. With the use of distance metrics,
algorithm 4 will also be capable of considering inexact, non-
perfect matches and will allow for a fair comparison of our
approach with other binary diffing software like Zynamics
BinDiff, which, according to public domain information, im-
plements a propagation phase.

Furthermore, we believe there’s still a lot to be researched
regarding the Markov properties of computer programs. Such
a study may, in turn, give birth to even more efficient Markov-
based features for telling the similarities and the differences
between functions in two programs. Additionally, we believe

there’s a lot of room for improvement on the weight assign-
ment schemes presented in section IV. They need to be more
thoroughly studied, evaluated and extended to mirror more
distinctive characteristics of the subject CFGs.

Another limitation of our work can also be seen in section
IV. The instruction classification feature is based on an ex-
isting toolset targeting the Intel X86 architectures. With the
(relatively recent) emergence of ARM CPUs in the mobile
phone market, security researchers have shifted their focus to
these targets. Consequently, it is imperative for a binary diffing
tool to be able to handle these architectures as well. For this
purpose, executable code of the compared subjects, needs to be
translated to a platform-agnostic intermediate representation
(IR) first. The resulting IR instructions can then be classified
in a similar fashion. Specific implementation details, however,
depend on the IR used.

Last but not least, a complete binary diffing approach should
not only depend on the CG and CFG, the control-flow depen-
dencies, but should also take into account data dependence
relations present in the examined programs. Towards this, PDG
(Program Dependence Graph) based techniques have already
been proposed and studied [17]. In such an approach, feature
vectors can be extracted from the compared programs’ data
elements to aid in the overall diffing process.

Once our study matures, our prototype system will be
released as an open source project, freely available to the
public.
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