USING PROGRAM INSTRUMENTATION
TO IDENTIFY SECURITY BUGS

DIMITRIOS GLYNOS (@dfunc on twitter)
dimitris@census-labs.com

One\n conf 2020

WWW.census-labs.com

> WHAT IS PROGRAM INSTRUMENTATION?

* The process of adding special instructions to a
program in order to:

— Monitor / measure its performance
— Diagnose errors
— Write trace information

Program Execution Flow

PROGRAM srumentaron PROGRAM PROGRAM instRumeNTATION
CODE COBE CODE CODE £00E

CENSUS S.A. A
www.census-labs.com

> ABOUT THIS PRESENTATION

* Can program instrumentation help us find
security bugs?
* Bugs that someone may use to:
— terminate the execution of a program
— alter the execution of a program
— retrieve program secrets

CENSUS S.A. A
www.census-labs.com

> PROGRAM ANALYSIS

* Program Analysis

— Automated reasoning about program semantics
— “Are there potential buffer overflows in this program?”

— Reasoning is sometimes hard; but instrumentation
can help!

* Static vs Dynamic Analysis Techniques
— Static analysis: program analysis for software at rest
— Dynamic analysis: program analysis for software

during execution
CENSUS S.A. A
www.census-labs.com

> INSTRUMENTATION & PROGRAM ANALYSIS

Access to Source Access Only to
Code Binary

Static Analysis (1) Annotations ?

(3) Static Binary
Dynamic Analysis (2) Compile-time Rewrite
Instrumentation
(4) Dynamic Binary
Instrumentation (DBI)

CENSUS S.A. A
www.census-labs.com

> ANNOTATIONS TO AID STATIC ANALYSIS

CENSUS S.A. A
www.census-labs.com

> ANNOTATIONS FOR CLANG ANALYZER

int bar(int*p, int g, int *r) _ attribute_ ((monnull(1l,3))):

int foo(int *p, int *qg) {
return !p ? bar(g, 2, p)

4 '?' condition Is true J

2 Null pointer passed as an argument to a 'nonnull' parameter J

: bar(p, 2. Q);

From https://clang-analyzer.llvm.org/annotations.html#attr_nonnull

CENSUS S.A. A
www.census-labs.com

> COMPILE-TIME INSTRUMENTATION

CENSUS S.A. A
www.census-labs.com

> GOO0GLE SANITIZERS

* |Instrumentation to terminate application and
report issue when an undesired condition

OCCUrsS
— AddressSanitizer — Memory Corruption detector

— ThreadSanitizer — Data Race detector
— KCSAN - Kernel Data Race detector

CENSUS S.A. A
www.census-labs.com

> AddressSanitizer CRASH REPORTING

« AddressSanitizer provides stack unwinding and other terse
reporting to aid root cause analysis

$./buggy-program-compiled-with-asan afl_outputs/crash_input_001
==74917==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x60b00000aff4 at pc
0x0000004008dc bp Ox7ffdb826d790 sp Ox7ffdb826d7860
WRITE of size 1 at Ox60bo00OOaff4 thread TO
#0 0x4008db in offbyone (/home/f/afl/buggy-program-compiled-with-asan+0x4008db)
#1 0x400927 in main (/home/f/afl/buggy-program-compiled-with-asan+0x400927)

0x60b00OOVaff4 is located O bytes to the right of 100-byte region
[0x60b000ORaT90,0x60b0VRRLaTT4)
allocated by thread TO here:

#0 Ox7fa@leafc602 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.2+0x98602)

#1 0x40089b in offbyone (/home/f/afl/buggy-program-compiled-with-asan+0x40089b)
SUMMARY: AddressSanitizer: heap-buffer-overflow ??:0 offbyone

CENSUS S.A.
www.census-labs.com

> AddressSanitizer MEMORY AFTER OFF-BY-ONE

Shadow bytes around the buggy
Ox0cle7fff95a0: fa fa fa fa fa fa fa
Ox0cle7fff95b0: fa fa fa fa fa fa fa
Ox0cle67fff95c0: fa fa fa fa fa fa fa
Ox0cle7fff95do: fa fa fa fa fa fa fa
Ox0cle7fff95e0: fa fa fa fa fa fa fa

=>0x0cl67fff95f0: fa fa 00 00 00[04]fa
Ox0cle7fff9600: fa fa fa fa fa fa fa
Ox0cle7fff9610: fa fa fa fa fa fa fa
Ox0cle7fff9620: fa fa fa fa fa fa fa
Ox0cle7fff9630: fa fa fa fa fa fa fa
Ox0cle7fff9640: fa fa fa fa fa fa fa

CENSUS S.A. A
www.census-labs.com

> BUT HOW DO WE TRIGGER A SANITIZER?

* Need to “drive” code to interesting parts
— Use Unit Testing
— Use Fuzzing!

* Fuzzing: black box testing technique “for

discovering faults in software by providing
unexpected inputs and monitoring for

exceptions”

CENSUS S.A. A
www.census-labs.com

> [MPORTANT FEATURES OF A FUZZER

* Coverage driven

— Find inputs that exercise as many paths as
possible

— Coverage stats gathered through instrumentation!

* Context aware

— Some paths are hard to reach (even with a solver),
e.g. branch where a CRC was found to be correct

— Create appropriate input for the specific file format
/ protocol being tested

CENSUS S.A. A
www.census-labs.com

> AFL DEMO

CENSUS S.A. A
www.census-labs.com

> BEYOND C/C++ FUZZING

* Fuzzing using coverage instrumentation, but
in other languages
— go-fuzz (fuzzing Go code)
— jsfuzz (fuzzing JavaScript code)
— JQF (fuzzing JAVA code)
— SharpFuzz (fuzzing .NET IL code)

CENSUS S.A.
www.census-labs.com

> PROTECTING PRODUCTION BINARIES

» Can we use instrumentation to stop an attack?

— Google Sanitizers are too elaborate (read: slow) for
production binaries...

— However, we can use:
 Canary stack protection — crash when “canary” guard gets
overwritten
— See -fstack-protector option
 Control Flow Integrity (CFI) — crash if function was called
out of context
— See -fsanitize=cfi* (Clang) or -fcf-protection (GCC on Intel)
 Pointer Authentication for ARM - crash if pointer value
was not created by the program
— See -mbranch-protection and -msign-return-address

CENSUS S.A. A
www.census-labs.com

> CFl DEMO

CENSUS S.A. A
www.census-labs.com

> BINARY INSTRUMENTATION

CENSUS S.A. A
www.census-labs.com

> STATIC BINARY REWRITE

* |njecting instrumentation into a binary and keeping the
binary sound is a non-trivial task

* Why do this?

— Inject security controls (e.g. stack canaries) to 3™ party
blob

— Reassemble binary so that public exploits won't work
— Enable coverage guided fuzzing
— Adding google-sanitizer-like instrumentation

* Many frameworks with growing architecture support:

— McSema
— MIASM
— multiverse

CENSUS S.A. A
www.census-labs.com

> DYNAMIC BINARY INSTRUMENTATION

* |nject instrumentation while program executes

— Get binary rewriting benefits without touching the
binary...

— Userspace-level injection
* Valgrind (ready-made recipes for memory checks etc.)
* DynamoRIO (framework for injecting instrumentation)
* Intel Pin (not FOSS, but excellent support for Intel arch.)

— Virtualization-level injection

 See AFL QEMU mode
CENSUS S.A. @
www.census-labs.com

> VALGRIND DEMO

CENSUS S.A. A
www.census-labs.com

> CONCLUSIONS

CENSUS S.A. A
www.census-labs.com

> INTEGRATING INSTRUMENTATION IN THE SDLC

« Annotation-type e Dynamic Analysis « Stack Canaries
guidance of Static during Unit Testing « Pointer
Analysis « Focused Fuzzing Authentication

Campaigns « CFI

« Focused Closed
Source Component
Inspection using

DBI
CENSUS S.A. A
www.census-labs.com

> FOR MORE INFORMATION

See our FOSSCOMM 2018 presentations on “Instrumentation With and
Without Source Code” (they cover much more than just security uses!)

“Fuzzing: Brute Force Vulnerability Discovery”, by Sutton, Greene and Amini

“From hack to elaborate technique - A survey on binary rewriting”, by
Wenzl, Merzdovnik, Ullrich and Weippl

https://github.com/google/sanitizers
https://lcamtuf.coredump.cx/afl/
https://valgrind.org
https://github.com/DynamoRIO/dynamorio

https://software.intel.com/content/www/us/en/develop/articles/pin-a-
dynamic-binary-instrumentation-tool.html

CENSUS S.A. A
www.census-labs.com

Sl goud

