
USING PROGRAM INSTRUMENTATION
TO IDENTIFY SECURITY BUGS

DIMITRIOS GLYNOS (@dfunc on twitter)
dimitris@census-labs.com

Oπe\n conf 2020

www.census-labs.com



> WHAT IS PROGRAM INSTRUMENTATION?

•

–

–

–

PROGRAM
CODE

INSTRUMENTATION
CODE

PROGRAM
CODE

PROGRAM 
CODE

INSTRUMENTATION
CODE

Program Execution Flow



> ABOUT THIS PRESENTATION

•

•

–

–

–



> PROGRAM ANALYSIS

•

–

–

–

•

–

–



> INSTRUMENTATION & PROGRAM ANALYSIS



> ANNOTATIONS TO AID STATIC ANALYSIS



> ANNOTATIONS FOR CLANG ANALYZER



> COMPILE-TIME INSTRUMENTATION



> GOOGLE SANITIZERS

•

–

–

–

–



> AddressSanitizer CRASH REPORTING

•

$ ./buggy-program-compiled-with-asan afl_outputs/crash_input_001
==74917==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x60b00000aff4 at pc 
0x0000004008dc bp 0x7ffdb826d790 sp 0x7ffdb826d780
WRITE of size 1 at 0x60b00000aff4 thread T0
#0 0x4008db in offbyone (/home/f/afl/buggy-program-compiled-with-asan+0x4008db)

#1 0x400927 in main (/home/f/afl/buggy-program-compiled-with-asan+0x400927)
…
0x60b00000aff4 is located 0 bytes to the right of 100-byte region 
[0x60b00000af90,0x60b00000aff4)
allocated by thread T0 here:

#0 0x7fa01eafc602 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.2+0x98602)
#1 0x40089b in offbyone (/home/f/afl/buggy-program-compiled-with-asan+0x40089b)

SUMMARY: AddressSanitizer: heap-buffer-overflow ??:0 offbyone



> AddressSanitizer MEMORY AFTER OFF-BY-ONE

Shadow bytes around the buggy address:

0x0c167fff95a0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c167fff95b0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c167fff95c0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c167fff95d0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c167fff95e0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

=>0x0c167fff95f0: fa fa 00 00 00 00 00 00 00 00 00 00 00 00[04]fa

0x0c167fff9600: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c167fff9610: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c167fff9620: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c167fff9630: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x0c167fff9640: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa



> BUT HOW DO WE TRIGGER A SANITIZER?

•

–

–

•



> IMPORTANT FEATURES OF A FUZZER

•

–

–

•

–

–



> AFL DEMO



> BEYOND C/C++ FUZZING

•

–

–

–

–

–



> PROTECTING PRODUCTION BINARIES

•
–

–
•

– –fstack-protector

•

– –fsanitize=cfi* –fcf-protection

•

– –mbranch-protection –msign-return-address



> CFI DEMO



> BINARY INSTRUMENTATION



> STATIC BINARY REWRITE

•

•
–

–

–

–

•
–

–

–



> DYNAMIC BINARY INSTRUMENTATION

•

–

–

•

•

•

–

•



> VALGRIND DEMO



> CONCLUSIONS



> INTEGRATING INSTRUMENTATION IN THE SDLC

Development

• Annotation-type 
guidance of Static 
Analysis

Testing

• Dynamic Analysis 
during Unit Testing

• Focused Fuzzing 
Campaigns

• Focused Closed 
Source Component 
Inspection using 
DBI

Production

• Stack Canaries

• Pointer 
Authentication

• CFI



> FOR MORE INFORMATION

•

•

•

•

•

•

•

•




